
GCM Performance Analysis
JEP JDK-8046943

JVM Hardware Crypto Acceleration

The enclosed charts show the performance improvements to AES/GCM/NoPadding executing Galois
Field Multiplication via HotSpot intrinsics. Hardware acceleration from both x86 and SPARC are used
on the most time-consuming part of GHASH, carry-less multiplication, which is part of GCM mode.
On x86 ISA instruction PCLMULQDQ and on SPARC ISA instructions xmul/xmulhi.

In the charts below, SunJCE HW denotes the intrinsified version. SunJCE 8 is the current shipping
pure software implementation.

This first graph shows the dramatic gains from the SunJCE 8 to SunJCE HW using Linux. A 16 bytes
encryption can perform at a rate of 26MB/sec with intrinsics, while the same 16 bytes in software
880KB/sec, over a 29x improvement. The numbers only improve as at 16K encryption, the
performance is up to 258 MB/sec while can only manage 4MB/sec, a 61x improvement .

16 32 64 128 256 512 1024 2048 4098 8192 16384
0

50

100

150

200

250

300

Single-threaded AES-GCM on Linux

SunJCE HW SunJCE 8

Input Data Size (bytes)

M
B

/s
e

c

Multi-threaded Performance

Multi-threaded performance also increased dramatically compared to JDK 8 GA. Looking at 32 and 64
threaded performance comparing SunJCE HW to the current shipping OracleUcrypto provider in 8. It
shows how that 16 bytes data size are roughly 375MB/secs for both 32 and 64 threaded tests, reaching
5.8GB/secs for 32 threads and 7.6GB/secs for 64 threads at 16K data sizes. Ucrypto shows
performance under 1MB/secs for 16 bytes data sizes and up to 800MB/secs for 16K data sizes. It is
believed this low performance is because of problems in the OracleUcrypto provider and not because
of OS, JCE, or HotSpot issues.

16 32 64 128 256 512 1024 2048 4098 8192 16384
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Solaris x86 AES-GCM Performace with 32 & 64 threads

Ucrypto 32 Ucrypto 64 SunJCE 32 SunJCE 64

Input Data Size (bytes)

M
B

/s
e

c

SPARC Performance

When looking at the SPARC results, we find performance differences. While multi-threaded shows
similar numbers as x86, the single-threaded performance plateaus around 2K data sizes for SunJCE
HW; meanwhile, OracleUcrypto continues on an upward path. Preliminary evaluation shows the
performance is not related to the GCM changes.

Nevertheless, this performance is still dramatically better than JDK 8 GA.

Conclusion

The performance increase is large compared to JDK 8 GA, ranging from 34x to 150x. An upcoming
bug fix (JDK-8069072) will improve the software-only version by 10x, but this doesn't diminish the
MB/sec and GB/sec throughput we will get from hardware acceleration and the better CPU utilization.
Bugs will be filed against OracleUcrypto for it's multi-threaded problems, and fixes will probably look
more like the single-threaded graphs.

The goal of this GCM work is to close and surpass native library performance. In many cases that has

16 32 64 128 256 512 1024 2048 4098 8192 16384
0

50

100

150

200

250

300

350

400

Single-threaded AES-GCM on Solaris SPARC

Ucrypto SunJCE HW SunJCE 8

Input Data Size (bytes)

M
B

/s
e

c

https://bugs.openjdk.java.net/browse/JDK-8069072

been met. More work can be done given some places where native libraries were still faster, but that
will require further analysis. Additional enhancements of parallelizing algorithms can help
performance and will be considered for future enhancements. Plans to move AES-GCM from SunJCE
to the top of the java.security provider list is a “go”, as the overall performance is better.

