
Thomas Stüfe, SAP
Sep 28, 2016

Metaspace Chunk Coalescation in the SAP
JVM

Public



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 2Public

Metaspace Chunk Allocation

VirtualSpaceList

HWM

class loaders

…

Global freelist

…

…
Initial
allocation

Return to freelist

Take from freelist

(all-free nodes are deleted)

(current node)



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 3Public

… x2 with compressed class space

class loaders

…

Class freelist

…

…

Non-class-space VS List

Class-space VS „List“
(Only one node, continuous
address space)

Non-class freelist

…



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 4Public

Metaspace chunk come in four sizes

- “Specialized” (128 words), “Small” (256/512 words), “Medium” (4K/8K
words), “Humongous” (large, variable sized)

- A class loader first gets 4 small chunks – only after using them up,
allocator switches to medium chunks.



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 5Public

Chunk Allocation (now)

- Chunks cannot be moved
- Chunks cannot be merged or split
- Chunks are placed in order of allocation
- Chunks are allocated aligned to smallest chunk size

s
p sm sm s

p medium sm medium sm

May lead to fragmentation



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 6Public

The Problem

Chunk cannot be changed in size, cannot be split or merged

- We may get an OOM *even though* the majority of the
metaspace may be free: the metaspace may be already
chopped up into chunks of the wrong size.

smmedium smsm smsmsm sm smsm sm smsmsms
p

s
p

s
p

Lots of free space, but cannot
be used as a medium chunk



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 7Public

The Problem (contd.)

Example: Lots of class loaders, each loading only a few small
classes. A lot of small chunks are created. Even if class
loaders are unloaded, the small chunks remain – free, but
unavailable to form a medium chunk.

Effectively, once allocated chunks are “locked in” into their
size.



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 8Public

Chunk Allocation (with coalescation patch)

- Chunks are aligned at chunk-size boundaries (except humongous)
- Chunks can be merged and split

smmedium sm s
p

s
p sm mediumsm smsmsm

smmedium sm s
p

s
p smmedium sm smsmsm

merge split



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 9Public

Are-neighbors-free check

- Before merging chunks, we need to check if neighboring chunks are free
- We use a bitmap to store in-use information for each smallest-chunk-sized range

smmedium sm s
p

s
p sm mediumsm smsmsm

(Merge possible)
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Chunks are aligned to chunk size, and medium chunks are x32/x64 smallest-
chunk-size => it is very cheap to check for a potential medium chunk sized
merger: just a 32/64bit load & compare with zero

bitmap



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 10Public

Chunk Merge

- Chunk merge happens proactively, when a chunk is returned
to the free list
- For the medium-sized-chunk range the freed chunk is part

of do:
- Check if all neighbors are free (via bitmap)
- Yes: Remove neighbors from freelist, form new medium

sized chunk, add it to freelist

- Repeat this for a potential specialized-chunks to small-chunk
merger



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 11Public

Chunk Split

- Chunk split happens when needed: we have only large
chunks, but need a small chunk
- Remove large chunk from freelist
- Split it into n smaller ones.
- Return n-1 chunks to freelist
- Return one chunk to caller



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 12Public

Humongous chunks are special…

sm sm sm humongous

Humongous chunks may straddle merge boundaries – merge not possible
even if all chunks are free..

X
Hence, to find prospective merging boundaries, we need a cheap way to find
out if at a given point a chunk starts. We use a second bitmap for that (1 for
„chunk starts here“)

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 bitmap



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 13Public

… (contd.)

Humongous chunks are not aligned to their chunk size (impossible to do) but
still share the same space with „normal“ chunks.

They need a lot of special treatment.

Alternative: Lets humongous chunk live at the end of a virtual space node?
(We did not do this in the SAP JVM, too many changes, but maybe possible in
the OpenJDK?)

HWM 1 HWM 2

„normal chunks“
Chunk-size aligned

Humongous chunks



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 14Public

Success

Example program: loads many small classes in many small classloaders,
unloads them, then loads large classes.

Ran with CompressedClassSpaceSize=10M

No patch: OOM (class space) after loading ~ 1000 large classes, only 40% of
class metaspace used, 60% of chunks in freelist

With patch: OOM (class space) after loading ~ 3000 large classes, class
metaspace mostly used, no chunks in freelist at OOM



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 15Public

Using Metaspace Coalescation in the SAP JVM

Switches:

- -XX:[+-]CoalesceMetaspace

- -XX:VerifyMetaspaceEveryNth=<0…n>: Debug switch - run a verification
every n allocation requests. 0 = deactivated (default), n>0 = every nth
request

- -XX:[+-]PrintMetaspaceStatisticOnOutOfMemoryError: print a metaspace
statistic if an OOME (metaspace related) happens to stderr.

- -XX:[+-]PrintMetaspaceMapOnOutOfMemoryError: print an ascii-art
metaspace map if an OOME (metaspace related) happens to stderr.



© 2016 SAP SE or an SAP affiliate company. All rights reserved. 16Public

Contribute to OpenJDK?

Draft for JEP: https://bugs.openjdk.java.net/browse/JDK-8166690

Currently waiting for input from community.

https://bugs.openjdk.java.net/browse/JDK-8166690


© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Thank you Contact information:

thomas.stuefe@sap.com


