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... X2 with compressed class space
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Metaspace chunk come in four sizes

- “Specialized” (128 words), “Small” (256/512 words), “Medium” (4K/8K
words), “Humongous” (large, variable sized)

- A class loader first gets 4 small chunks — only after using them up,
allocator switches to medium chunks.
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Chunk Allocation (now)

Chunks cannot be moved

Chunks cannot be merged or split

Chunks are placed in order of allocation

Chunks are allocated aligned to smallest chunk size

E

May lead to fragmentation |
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The Problem

Chunk cannot be changed in size, cannot be split or merged

- We may get an OOM *even though* the majority of the
metaspace may be free: the metaspace may be already
chopped up into chunks of the wrong size.

\ J
f

Lots of free space, but cannot
be used as a medium chunk
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The Problem (contd.)

Example: Lots of class loaders, each loading only a few small
classes. A lot of small chunks are created. Even if class
loaders are unloaded, the small chunks remain — free, but
unavailable to form a medium chunk.

Effectively, once allocated chunks are “locked in” into their
size.
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Chunk Allocation (with coalescation patch)

Chunks are aligned at chunk-size boundaries (except humongous)
Chunks can be merged and split
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Are-neighbors-free check

Before merging chunks, we need to check if neighboring chunks are free

We use a bitmap to store in-use information for each smallest-chunk-sized range
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Chunks are aligned to chunk size, and medium chunks are x32/x64 smallest-
chunk-size => it is very cheap to check for a potential medium chunk sized
merger: just a 32/64bit load & compare with zero
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Chunk Merge

- Chunk merge happens proactively, when a chunk is returned
to the free list

- For the medium-sized-chunk range the freed chunk is part
of do:

- Check if all neighbors are free (via bitmap)

- Yes: Remove neighbors from freelist, form new medium
sized chunk, add it to freelist

- Repeat this for a potential specialized-chunks to small-chunk
merger
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Chunk Split

- Chunk split happens when needed: we have only large
chunks, but need a small chunk

- Remove large chunk from freelist
- Split it into n smaller ones.

- Return n-1 chunks to freelist

- Return one chunk to caller
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Humongous chunks are special...

Humongous chunks may straddle merge boundaries — merge not possible
even if all chunks are free..

Hence, to find prospective merging boundaries, we need a cheap way to find
out if at a given point a chunk starts. We use a second bitmap for that (1 for
,chunk starts here®)

10101010000000000000000000000000 bitmap
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... (contd.)

Humongous chunks are not aligned to their chunk size (impossible to do) but
still share the same space with ,normal® chunks.

They need a lot of special treatment.

Alternative: Lets humongous chunk live at the end of a virtual space node?
(We did not do this in the SAP JVM, too many changes, but maybe possible in

the OpenJDK?)

~,nhormal chunks*
Chunk-size aligned — “«
HWM 1 HWM 2

Humongous chunks
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sSuccess

Example program: loads many small classes in many small classloaders,
unloads them, then loads large classes.

Ran with CompressedClassSpaceSize=10M

No patch: OOM (class space) after loading ~ 1000 large classes, only 40% of
class metaspace used, 60% of chunks in freelist

With patch: OOM (class space) after loading ~ 3000 large classes, class
metaspace mostly used, no chunks in freelist at OOM
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e
Using Metaspace Coalescation in the SAP JVM

Switches:
-XX:[+-]CoalesceMetaspace

-XX:VerifyMetaspaceEveryNth=<0...n>: Debug switch - run a verification
every n allocation requests. O = deactivated (default), n>0 = every nth
request

-XX:[+-]PrintMetaspaceStatisticOnOutOfMemoryError: print a metaspace
statistic if an OOME (metaspace related) happens to stderr.

-XX:[+-]PrintMetaspaceMapOnOutOfMemoryError: print an ascii-art
metaspace map if an OOME (metaspace related) happens to stderr.
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Contribute to OpenJDK?

Draft for JEP: https://bugs.openjdk.java.net/browse/JDK-8166690

Currently waiting for input from community.
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Contact information:

Thank you

thomas.stuefe@sap.com
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