Public

Metaspace Chunk Coalescation in the SAP
JVM

Thomas Stufe, SAP
Sep 28, 2016




Metaspace Chunk Allocation

class loaders Global freelist

A

Take from freelist

Initial
allocation

HWM

Virtuaispacetist RIS e roce

* (all-free nodes are deleted)

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 2



... X2 with compressed class space

class loaders

Non-class-space VS List

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Non-class freelist Class freelist

Class-space VS |, List"
(Only one node, continuous
address space)

Public



Metaspace chunk come in four sizes

- “Specialized” (128 words), “Small” (256/512 words), “Medium” (4K/8K
words), “Humongous” (large, variable sized)

- A class loader first gets 4 small chunks — only after using them up,
allocator switches to medium chunks.

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 4



Chunk Allocation (now)

Chunks cannot be moved

Chunks cannot be merged or split

Chunks are placed in order of allocation

Chunks are allocated aligned to smallest chunk size

E

May lead to fragmentation |

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 5



The Problem

Chunk cannot be changed in size, cannot be split or merged

- We may get an OOM *even though* the majority of the
metaspace may be free: the metaspace may be already
chopped up into chunks of the wrong size.

\ J
f

Lots of free space, but cannot
be used as a medium chunk

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 6



The Problem (contd.)

Example: Lots of class loaders, each loading only a few small
classes. A lot of small chunks are created. Even if class
loaders are unloaded, the small chunks remain — free, but
unavailable to form a medium chunk.

Effectively, once allocated chunks are “locked in” into their
size.

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 7



Chunk Allocation (with coalescation patch)

Chunks are aligned at chunk-size boundaries (except humongous)
Chunks can be merged and split

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 8



Are-neighbors-free check

Before merging chunks, we need to check if neighboring chunks are free

We use a bitmap to store in-use information for each smallest-chunk-sized range
L T T T T T O S S
o | sm medium

sm | Sm | Sm | SM

00000000111111111111000000000000 bitmap
(Mergepossmle) SR IR A

Chunks are aligned to chunk size, and medium chunks are x32/x64 smallest-
chunk-size => it is very cheap to check for a potential medium chunk sized
merger: just a 32/64bit load & compare with zero

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 9



Chunk Merge

- Chunk merge happens proactively, when a chunk is returned
to the free list

- For the medium-sized-chunk range the freed chunk is part
of do:

- Check if all neighbors are free (via bitmap)

- Yes: Remove neighbors from freelist, form new medium
sized chunk, add it to freelist

- Repeat this for a potential specialized-chunks to small-chunk
merger

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 10



Chunk Split

- Chunk split happens when needed: we have only large
chunks, but need a small chunk

- Remove large chunk from freelist
- Split it into n smaller ones.

- Return n-1 chunks to freelist

- Return one chunk to caller

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 11



Humongous chunks are special...

Humongous chunks may straddle merge boundaries — merge not possible
even if all chunks are free..

Hence, to find prospective merging boundaries, we need a cheap way to find
out if at a given point a chunk starts. We use a second bitmap for that (1 for
,chunk starts here®)

10101010000000000000000000000000 bitmap

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 12



... (contd.)

Humongous chunks are not aligned to their chunk size (impossible to do) but
still share the same space with ,normal® chunks.

They need a lot of special treatment.

Alternative: Lets humongous chunk live at the end of a virtual space node?
(We did not do this in the SAP JVM, too many changes, but maybe possible in

the OpenJDK?)

~,nhormal chunks*
Chunk-size aligned — “«
HWM 1 HWM 2

Humongous chunks

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public

13



sSuccess

Example program: loads many small classes in many small classloaders,
unloads them, then loads large classes.

Ran with CompressedClassSpaceSize=10M

No patch: OOM (class space) after loading ~ 1000 large classes, only 40% of
class metaspace used, 60% of chunks in freelist

With patch: OOM (class space) after loading ~ 3000 large classes, class
metaspace mostly used, no chunks in freelist at OOM

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 14



e
Using Metaspace Coalescation in the SAP JVM

Switches:
-XX:[+-]CoalesceMetaspace

-XX:VerifyMetaspaceEveryNth=<0...n>: Debug switch - run a verification
every n allocation requests. O = deactivated (default), n>0 = every nth
request

-XX:[+-]PrintMetaspaceStatisticOnOutOfMemoryError: print a metaspace
statistic if an OOME (metaspace related) happens to stderr.

-XX:[+-]PrintMetaspaceMapOnOutOfMemoryError: print an ascii-art
metaspace map if an OOME (metaspace related) happens to stderr.

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 15



Contribute to OpenJDK?

Draft for JEP: https://bugs.openjdk.java.net/browse/JDK-8166690

Currently waiting for input from community.

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Public 16


https://bugs.openjdk.java.net/browse/JDK-8166690

Contact information:

Thank you

thomas.stuefe@sap.com

© 2016 SAP SE or an SAP affiliate company. All rights reserved.



